Tecnologia, un sistema basato sull’IA monitora le strade durante le alluvioni

16
Foto di Gerd Altmann da Pixabay

Un nuovo sistema basato sull’intelligenza artificiale in grado di integrare dati da sensori esistenti e nuovi per valutare lo stato delle strade durante piogge forti ed eventi alluvionali. E’ quanto sviluppato dai ricercatori della Rice University che hanno dato conto dei propri risultati su ‘Reliability Engineering & System Safety’. Il framework utilizza dati provenienti da fonti quali avvisi sul traffico, telecamere e persino velocità del traffico, e sfrutta l’apprendimento automatico e la fusione dei dati per prevedere se una strada e’ allagata o meno. Il valore di tali fonti di dati e’ stato evidente durante l’uragano Harvey nel 2017, quando molte persone a Houston, compresi i soccorritori, hanno dovuto ricorrere all’esame manuale delle fonti di dati per dedurre le probabili condizioni stradali, per ovviare alla mancanza di dati affidabili in tempo reale sulle condizioni stradali. Per testare il sistema chiamato OpenSafe Fusion, i ricercatori hanno utilizzato i dati storici sulle inondazioni osservate durante Harvey per ricreare lo scenario nel framework, costituito da circa 62.000 strade nella regione di Houston. “Il modello e’ stato in grado di osservare circa 37.000 collegamenti stradali, che rappresentano circa il 60% della rete da noi presa in considerazione, e questo rappresenta un miglioramento significativo”, ha affermato Panakkal. Altre fonti di dati che potrebbero essere utilizzate nel framework includono sensori del livello dell’acqua, portali cittadini, crowdsourcing, social media e modelli di inondazione.